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It is extremely difficult to take into account the variety of aspects of the behavior of solids when
they are deformed, Hence, when designing constructions, simplifying models are introduced
which take into account only the most important properties of the materials in each specific
case (creep, aftereffect, plasticity, etc.), and the corresponding phenomenological theories

are employed [1]. In this paper we attempt to construct the fundamentals of a theory which
describes the phenomenon of ferroelasticity due to the behavior of thermoelastic martensite,
first discovered in [2]. The apparatus of this theory will be necessary when designing self-
recovering constructions which can be manufactured from materials with a mechanical shape
memory.

1. It bas recently been found that a large number of alloys (NiTi, CuAINi, CuZn, CuZnSi, AlICuZn, FeNi,
FeMn, NiAl, etc,) and certain pure metals (Co, Ti, Zr) undergo a thermoelastic martensitic transition, which
is accompanied by a number of unique properties: superelasticity, a shape memory effect, spontaneous di-
rectional deformation when cooled, etc, [3-7].

The most interesting effect (from the point of view of its technological use) is the shape memory effect,
which is as follows. If the material, which is in the high-temperature modification, is given a certain geo-
metrical shape, and then, when it is cooled through the martensite-transition temperature it is plasticly de-
formed, when it is then heated above the transition point the material reverts to its initial specified shape.
The value of the completely reversible inelastic deformation is not the same for different materials and is
6-16% [3, 5].

Figure 1 shows a schematic family of graphs illustrating the most important features of the mechanical
properties of alloys with thermoelastic martensite at different temperatures. Curve 1 represents the usual
plastic flow, curves 2 and 3 represent the deformation as a function of the stress when the superelasticity
effect is present, and curve 4 illustrates the effect which has come to be called ferroelasticity and is directly
responsible for the mechanical shape memory [8]. The temperatures TAop and Tyia correspond to the forward
and reverse martensitic transitions, All the graphs are symmetrical about the origin of coordinates. Note
that the term ®erroelasticity™ has been introduced because of the resemblance between the shape of the graphs
of the magnetization of ferromagnetic materials as a function of the external magnetic field, and the deforma-
tionasa: function of the stress for materials with shape memory.

Investigations of the microstructure of martensite show that it consists of different kinds of structural
formations (twin plates, packing defects, superdislocations, etc. [9]), which have been called domains. The
domains possess a residual deformation oy; compared with the high-temperature phase. Its intensity o=
IW is the same for all domains and is determined by the crystal-geometrical features of the phase transi-
tlon ‘The orientation, which can be specified by the unit vector in deformation space with components kj; =
ojjo -1, can be both random and ordered. Averaging over the volume of the specimen therefore leads, re-
spectively, to zero or different from zero residual macrodeformations

ey = .;_j.aijdV = a (ki
v

They obviously reach a maximum value when there is complete ordering of the orientation of the vector with
components kj; in a certain direction. Hence, the motion of the domain walls in actual space, which leads to
storage of ine 1Jast1c deformations, corresponds to reorientation of the unit vectors in deformation space.
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Note that the hydrostatic pressure does not have any appreciable effect on the thermoelastic martensitic
transition, but the change in the specific volume of the phases through the transition is negligibly small for
the majority of materials [5], so that all the tensors considered here coincide with their deviators.

2. We will consider the deformation below the temperature Tpia. We will write the thermodynamic
Gibbs potential of unit volume of the isotropic martensitic phase having maximum inelastic deformations

characterized by the unit vector with components njj:
2,1
-“Gn=‘12‘l’«3i13i;+“”usii’f‘g(T),, 2.4)
where ¢ is the inverse of twice the shear modulus, 8ij is the stress tensor, and g(T) is the chemical component
of the potential, which depends on temperature, It is obvious that it is the same for martensite of any orien-
tation, The deformation tensor, as is well known, can be expressed in terms of the derivative of the Gibbs
potential

e, (2.2)

£y = — 5 = pisi; - ani; =l 4 ef;.
i
Equations (2.1) and (2,2) have been written on the assumption that the martensite obeys Hooke's law always,
including the instants of reorientation, when a change in the inelastic components of the deformation occurs.
Suppose that reorientation of the martensite into the deformed state, characterized by a vector with components

mij, occurs due to applied stresses, The thermodynamic potential then has the form
—Gm = (1/2)psyysi5 + amygs;; + g(T),
while the deformation tensor has the form
Wsij t~ Gy
In a certain intermediate state in the volume Viy the domains will have a new orientation mij, and in the
volume Vy, =V — Vp, asbefore, itis determined by the vector with components njj. Here V is the volume of the

whole specimen. The macroscopic inelastic deformations, determined by averaging over the volume V, have
the form

Vi

Vm
o3 = (b = fx{—y mi; + (1 —--V-) nii} = any; 4 Ao {my; — ny;}, (2.3)

where A =V, V™! is the concentration of newly formed martensite.

On the other hand, since the motion of the interdomain walls has an energetically active character, the
condition for a transition from the state nj; to the state mj; can be written in the form
fis) = G, —Gp, = almy; — nyj)sy; = E(T), (2.4)
where K(T) is the activation energy., Comparing Eq. (2.3) written in terms of increments and Eq. {2.4) we
obtain

n
des; = dh (my; — ny;) o = di, % (2.5)
Hence, the increments in the inelastic compoents of the deformation tensor during reorientation of thermo-
elastic martensite obey the associated flow law (2,5) with the flow condition (2.4) [10]. The coefficient of pro-
portionality dA has the meaning of the increment of the concentration of the newly formed phase,
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Equation (2.4) defines a family of surfaces in stress space (we will call them reorientation surfaces),
which depend on the parameter mj;. In practice, that martensitic orientation is realized (and, consequently,
that surface is fixed) for which condition (2.4) is satisfied for the minimum stress intensity s = J?l]s—u, which
corresponds to the maximum work of the stresses on the inelastic deformations {4], It can be shown that then
mij= s?j = sijs‘1 and it follows from Eqs. (2.4) and (2,5) that

Fals) = (s — nysia = E(T); (2.6)

ded; = dh (sys—! — ny;) a. (2.7)

Surface (2.6) defines the region, the stress changes in which cause only elastic deformations, Figure 2
shows a polar diagram of the dependence of s on the angle ¢ between the directions nj; and sg. in the case of
a two-component stress state (curve 1), Since the components of the vector nj; emerge as pai'ameters of the
history of the inelastic deformation, martensite having some other orientation mij will possess the following

reorientation condition:
fm(s) = (s — mysi)a = K(T) (2.8)

(see Fig, 2, curve 2). The presence of a complex structure consisting of domains with both orientations
implies the simultaneous existence of two surfaces. Consequently, elastic deformation of the specimen as a
whole, not touching on its structure, is possible if the stresses vary inside the hatched region.

In the case of complex loading relations (2.7) in general become nonintegrable and final relations of the
form (2.3) cannot be constructed using them, : '

3. As an example, consider a simple alternating deformation. In particular, this can be a uniaxial
extension—compression, an alternating twist, etc. Suppose that at the initial instant of time the specimen
consists of domains with an orientation specified in a certain way in the chosen system of coordinates by a
directional vector with a single nonzero component n=1 (Fig. 3, curve 1), Iis residual deformation is equal
to e® = o (Fig, 4, curve 1), In the chosen system of coordinates we obtain from Eq, (2.6)

f4(s) = s(1 — % = H(T), (3.1)
where s’=x1, If the deformation occurs in the positive direction s%=1, then condition (3.1) will not be satisfied
for finite values of the stress and, consequently, in this case an elastic deformed state is realized {Sec.
1—2 in Fig, 4).

Loading in the opposite direction s'=—1 will be elastic up to a value of the stress sp =K(T)/ 2¢, which
follows from Eq, (3.1), The reorientation processes which then occur lead to the appearance of domains with
a direction vector m =—1 and storage by the specimen of the residual deformation e =—¢, and to replacement
of the flow surface. We obtain from Eq. (2.8)
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f-l8) = s(i + &%) a = H(T)

(Fig. 3, curve 2). It can be seen from this equation that a further increase in the stresses in the previous
direction s%=—1 will be accompanied only by elastic deformation (4—5, Fig. 4). Repeated deformation in the
positive direction has an elastic region bounded by the value of the surface sp=K(T)/ 2c, which follows from
Eq. (3.2) (point 6 in Fig, 4), Subsequent reorientation closes the cycle,

According to this theory further isothermal cycling does not lead to any change in the parameters of the

hysteresis loop, which agrees with experiment [8], Their temperature dependence manifests itself in terms
of the activation energy K(T) of the reorientation mechanism, Disappearance of the loop when T =Typp denotes
complete return of inelastic deformation, acquired in the martensitic state [3].
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