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It is extremely difficult to take into account the variety of aspects of the behavior of solids when 
they are  deformed. Hence, when designing constructions, simplifying models are  introduced 
which take into account only the most important properties of the materials  in each specific 
case (creep, aftereffect, plasticity, etc.), and the corresponding phenomenological theories 
are employed [1]. In this paper we attempt to construct the fundamentals of a theory which 
describes the phenomenon of ferroelast ici ty due to the behavior of thermoelastic martensite, 
f i r s t  discovered in [2]. The apparatus of this theory will be necessary when designing self- 
recovering constructions which can be manufactured from materials  with a mechanical shape 
memory.  

1. It has recently been found that a large number of alloys (NiTi, CuAINi, CuZn, CuZnSi, AICuZn, FeNi, 
FeMn, NiAI, etc.) and certain pure metals (Co, Ti, Zr) undergo a thermoelastic martensitic transition, which 
is accompanied by a number of unique properties: superelasticity, a shape memory effect, spontaneous di- 
rectional deformation when cooled, etc. [3-7]. 

The most interesting effect (from the point of view of its technological use) is the shape memory effect, 
which is as follows. If the material, which is in the high-temperature modification, is given a certain geo- 
metrical shape, and then, when it is cooled through the martensite-transition temperature it is plasticly de- 
formed, when it is then heated above the transition point the material reverts to its initial specified shape. 
The value of the completely reversible inelastic deformation is not the same for different materials and is 
6-16% [3, 5]. 

Figure 1 shows a schematic family of graphs illustrating the most important features of the mechanical 
properties of alloys with thermoelastic m~rtensite at different temperatures.  Curve 1 represents the usual 
plastic flowp curves 2 and 3 represent  the deformation as a function of the s t ress  when the superelasticity 
effect is present, and curve 4 i l lustrates the effect which has come to be called ferroelasticity and is directly 
responsible for the mechanical shape memory [8]. The temperatures TAM and TMA correspond to the forward 
and reverse  martensitic transit ions.  All the graphs are symmetrical about the origin of coordinates. Note 
that the te rm WferroelasticityW has been introduced because of the resemblance betwee~ the shape of the graphs 
of the magnetization of ferromagnetic materials  as a function of the external magnetic field, and the defornm- 
tionasa~ function of the s t ress  for materials  with shape memory.  

Investigations of the microstructure  of martensite show that it consists of different kinds of structural 
formations (twin plates, packing defects, superdislocations, etc. [9]), which have been called domains. The 
domains possess a residual deformation ~ij compared with the high-temperature phase. Its intensity c~ = 

is the same for all domains and is determined by the crystal-geometrical  features of the phase t ransi-  
tion~ T h e  orientation, which can be specified by the unit vector in deformation space with components kij -- 
a i j~ -1, can be both random and ordered. Averaging over the volume of the specimen therefore leads, re -  
spectively, to zero or  different from zero residual macrodeformations 

e i j =  ~- o: i jdV = ~ ~ki~.). 
V 

They obviously reach a maximum value when there is complete ordering of the orientation of the vector with 
components kij in a certain direction. Hence, the motion of the domain walls in actual space, which leads to 
storage of ineIastic deformations, corresponds to reorientation of the unit vectors in deformation space. 
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Note that the hydrostatic pressure does not have any appreciable effect on the thermoelastic martensitic 
transition, but the change in the specific volume of the phases through the transition is negligibly small for 
the majority of materials [5], so that all the tensors considered here coincide with their deviators. 

2. We will consider the deformation below the temperature TMA. We will write the thermodynamic 
Gibbs potential of unit volume of the isotropic martensitic phase having maximum inelastic deformaticns 

character ized by the unit vector with components nij: (2.1) 
i 

- -  G,~ = -~ ~ts~js~j ~ ~ n l s s ~  ~ g (T),, 

where # is the inverse of twice the shear modulus, sij is the stress tensor, and g(T) is the chemfiml component 
of the potential, which depends on temperature. It is obvious that it is the same for martensite of any orien- 
tation~ The deformation tensor, as is well known, can be expressed in terms of the derivative of 1~e Gibbs 

potential 
~r (2.2) 

- -  v + e , ; .  e i j =  - -  ~ - -  ~si j  + o~ntj -~  e v " 

Equations (2.1) and (2.2) have been written on the assumption that the martensi te  obeys Hookers law always, 
including the instants of reorientation, when a change in the inelastic components of the deformation occurs .  
Suppose that reorientation of the martensi te  into the deformed state, character ized by a vector with components 
mij, occurs  due to applied s t resses .  The thermodynamic potential then has the form 

- - a . ~  = (l/2)~ts~si~ + ~mus~ ~ + g ( 7 ) ,  

while the deformation tensor  has the form 

~s U -1- o~m,u. 

In a certain intermediate state in the volume Vm the domains will have a new orientation m[], and in the 
volume Vn =V - V m as before,  it is determined by the vector with components nij. Here  V is the volume of the 
whole specimen. The macroscopic inelastic deformations, determined by averaging over  the volume V, have 
the form 

where X =Vm V-1 is the concentration of newly formed martensi te .  

On the other hand, since the motion of the interdomain walls has an energetically active character ,  the 
condition for a transit ion from the state nij to the state mij can be written in the form 

f(s) ~--- G,~--Gm = o~(m~j - -  n~s)sij =/~(T), (2.4) 

where K(T) is the activation energy. Comparing Eq. (2.3) written in t e rms  of increments and Eq. (2.4) we 
obtain 

a s  i j  (2.5) 

Hence, the increments in the inelastic compoents of the deformation tensor  during reorientation of thermo-  
elastic martensi te  obey the associated flow law (2.5) with the flow condition (2.4) [10]. The eoeff~3ient of pro-  
portionality d~ has the meaning of the increment of the concentration of the newly formed phase. 
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Equat ion (2.4) def ines  a f ami ly  of  s u r f a c e s  in s t r e s s  space  (we will ca l l  t hem reor i en ta t ion  sur faces) ,  
which depend on the  p a r a m e t e r  mi j .  In p rac t i ce ,  that  ma r t ens i t i c  o r ien ta t ion  is r ea l i zed  (and, consequently,  
tha t  su r f ace  is  fixed) fo r  which condit ion (2.4) is  sa t i s f ied  fo r  the  m i n i m u m  s t r e s s  intensi ty s = ~ which 
c o r r e s p o n d s  to the  m a x i m u m  work  of the s t r e s s e s  on the  inelast ic  de fo rmat ions  [4]. It can be shown that  then 
mt j  = s~j-= s t j s  -1 and it fol lows f r o m  Eqs .  (2.4) and (2.5) that  

f,,(s) = (s - -  n u s u ) ~  = / f ( T ) ;  (2.6) 

d e ~  = d ~  (s t )s  - I  - -  n~)) r (2.7) 

Sur face  (2.6) def ines  the  region,  the  s t r e s s  changes  in which cause  only e las t ic  deformat ions .  F ig u re  2 
shows a po la r  d i a g r a m  of  the  dependence of s on the angle r between the d i rec t ions  nij and s~. in the c a s e  of 
a two-componen t  s t r e s s  s t a te  (curve  1). Since the  componen t s  of  the  vec to r  nij e m e r g e  as  p ~ a m e t e r s  of the 
h i s to ry  of the inelas t ic  deformat ion ,  m n ~ e n s i t e  having some  o ther  or ien ta t ion  mij will p o s s e s s  the following 
r eo r t en ta t ion  condition: 

fro(s) = (s - -  m , j s i , ) c t  = R ( T )  (2.S) 

(see  Fig .  2, c u r v e  2). The p r e s e n c e  of a complex  s t r u c t u r e  cons i s t ing  of  domains  with both o r ien ta t ions  
impl i e s  the s imul taneous  ex i s tence  o f  two s u r f a c e s .  Consequent ly ,  e last ic  deformat ion  of the spec imen  as  a 
whole,  not touching on i ts  s t ruc tu re ,  i s  pos s ib l e  if the s t r e s s e s  v a r y  inside the hatched region.  

In the  c a s e  of com p l ex  loading r e l a t i ons  (2.7) in genera l  become  nonintegrable  and final r e l a t ions  of the 
f o r m  (2.3) cannot  be  cons t ruc t ed  us ing  t h e m .  

3. As  an example ,  cons ide r  a s i m p l e  a l t e rna t ing  deformat ion .  In pa r t i cu l a r ,  this  can be a uniaxial  
ex~ension--compress ionp an a l t e rna t ing  twis t  s e tc .  Suppose that  at the initial instant  of  t i m e  the  spec imen  
c o n s i s t s  of  domains  with an o r ien ta t ion  specif ied in a c e r t a i n  way in the chosen s y s t e m  of coord ina te s  by a 
d i rec t ional  v e c t o r  wif~ a single nonzero  component  n = l  (Fig.  3, cu rve  1). I t s  r e s idua l  deformat ion  is  equal 
to e n = ~ (Fig.  4D c u r v e  1). In the chosen  s y s t e m  of coord ina tes  we obtain f r o m  Eq. (2.6) 

/+(s) = s(t - -  s~ = Zi'(T)l (3.1) 

where  s o= ~- 1. I f  the  de fo rma t ion  o c c u r s  in the pos i t ive  d i rec t ion  sO= 1, then condit ion (3.1) will not be sa t is f ied  
f o r  f ini te  va lues  of  the  s t r e s s  and, c o n s e q u e n t l y ,  in this case  an elastLc deformed  s ta te  is r ea l i zed  (See. 
1-2  in Fig. 4). 

Loading in the  oppos i te  d i rec t ion  s ~  vr be  e las t ic  up to a value of the s t r e s s  s n = K ( T ) / 2 ~ ,  which 
follows f r o m  Eq.  (3.1). The  r eo r i en t a t i on  p r o c e s s e s  which then occur  ' e a d  to the appea rance  of duma;.ns with 
a d i rec t ion  vec to r  m = - 1  and s to rage  by the s p e c i m e n  of  the  res idua l  de format ion  e n = - a ,  and to r e p l a c e m e n t  
of  the flow su r face .  We obtain  f r o m  Eq. (2.8) 
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/_(s) = s( i  + ~ )  ~ = ~ ( T )  

(Fig. 3, curve 2). It can be seen from this equation that a further increase in the stresses in the previous 
direction s o =-1 will be accompanied only by elastic deformation (4-5, Fig. 4). Repeated deformation in the 
positive direction has an elastic region bounded by the value of the surface Sn=K(T)/2a , which follows from 
Eq. (3.2) (point 6 in Fig. 4). Subsequent reorientation closes the cycle. 

According to this theory further isothermal cycling does not lead to any change in the parameters of the 
hysteresis loop, which agrees with experiment [8]. Their temperature dependence manifests itself in terms 
of the activation energy K(T) of the reoriemtation mechanism. Disappearar~ce of the loop when T =TMA denotes 
complete return of inelastic deformation, acquired in the martensitic state [3]. 
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